方案设计
根据不同的工作原理,可以拟定多种不同的执行机构的具体方案。例如仅以切削螺纹来说,既可以采用工件只作旋转运动而刀具作直线运动来切削螺纹(如在普通车床上切削螺纹),也可以使工件不动而刀具作转动和移动来切削螺纹(如用板牙加工螺纹)。这就是说,即使对于同一种工作原理,也可能有几种不同的结构方案。
传动部分的方案就更为复杂多样了。对于同一传动任务,可以由多种机构及不同机构的组合来完成。因此,如果用Ⅳ,表示原动机部分的可能方案数,N2和N3分别代表传动部分和执行部分的可能方案数,则机器总体的可能方案数Ⅳ为Ni×N2×N3个。
机器的运动学设计。根据确定的结构方案,确定原动件的参数(功率、转速、线速度等)。然后做运动学计算,从而确定各运动构件的运动参数(转速、速度、加速度等)。
机器的动力学计算。结合各部分的结构及运动参数,计算各主要零件所受载荷的大小及特性。此时求出的载荷,由于零件尚未设计出来,因而只是作用于零件上的公称(或名义)载荷。
计算机在机械设计中的应用
随着计算机技术的发展,计算机在机械设计中得到了日益广泛的使用,并出现了许多率的设计、分析软件。利用这些软件可以在设计阶段进行多方案的对比,可以对不同的包括大型的和很复杂的方案的结构强度、刚度和动力学特性进行的分析。同时,还可以在计算机上构建虚拟样机,利用虚拟样机仿真对设计进行验证,从而实现在设计阶段充分地评估设计的可行性。可以说,计算机技术在机械设计中的推广使用已经并正在改变机械设计的进程,它在提高设计质量和效率方面的优势是难以预估的。